Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

A. Sivalakshmidevi, ${ }^{\text {a }}$ K. Vyas, ${ }^{\text {a }}{ }^{*}$
 S. Mahender Rao ${ }^{\text {b }}$ and
 G. Om Reddy ${ }^{\text {b }}$

${ }^{\text {a }}$ Discovery Research, Dr. Reddy's Laboratories, 7-1-27, Ameerpet, Hyderabad 500 016, India, and ${ }^{\mathbf{b}}$ Custom Chemical Services, Dr. Reddy's Laboratories, 7-1-27, Ameerpet, Hyderabad 500 016, India

Correspondence e-mail: vyask@drreddys.com

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.007 \AA$
R factor $=0.068$
$w R$ factor $=0.068$
Data-to-parameter ratio $=9.1$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2002 International Union of Crystallography Printed in Great Britain - all rights reserved

A monoclinic polymorph of venlafaxine hydrochloride

Venlafaxine hydrochloride, $[(\pm)$ - N, N-dimethyl-2-(1-hydroxy-cyclohex-1-yl)-2-(4-methoxyphenyl) ethylamine hydrochloride, $\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{ClNO}_{2}$] is found to crystallize in both orthorhombic and monoclinic crystal systems. The molecular structures in the two polymorphs differ in the conformations of the substituents at the ethylamine group. In the monoclinic crystal structure, the molecules translated along the a axis are linked by Cl^{-}ions through $\mathrm{O}-\mathrm{H} \cdots \mathrm{Cl}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds to form infinite one-dimensional chains.

Comment

Venlafaxine hydrochloride, $[(\pm)-\mathrm{N}, \mathrm{N}$-dimethyl-2-(1-hydroxy-cyclohex-1-yl)-2-(4-methoxyphenyl) ethylamine hydrochloride, $\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{ClNO}_{2}$] is used as an antidepressant and an anxiolytic. Recrystallization of the compound for purification yielded crystals of two different morphologies, viz. blocks (form I) and needles (form II), as observed under the microscope. They were separated manually and characterized by different solid-state techniques such as differential scanning calorimetry, infrared spectroscopy, powder X-ray diffraction and single-crystal X-ray diffraction. These polymorphic forms were patented along with their characteristic physicochemical data (Rao et al., 1999,, 2002). Recently, the crystal structure of form I has been reported in the orthorhombic space group Pca2 2_{1} byVega et al. (2000). In this paper we report the structure of form II and compare it with that of form I.

(II)

Form II of venlafaxine hydrochloride is found to crystallize in the monoclinic space group $P 2_{1} / n$. The structure of the molecule in the monoclinic form is shown in Fig. 1. All the bond lengths (Table 1) show normal values (Allen et al., 1987) and agree well with the corresponding values observed for the orthorhombic polymorph (Vega et al., 2000). In both polymorphs, the cyclohexane ring adopts a chair conformation. An intermolecular hydrogen bond links the N atom of the dimethylammonium group of the venlafaxine cation to the chloride anion. The chloride ion is also involved in another

Received 12 August 2002
Accepted 4 September 2002
Online 13 September 2002
DRL Publication No. 230

Figure 1
A perspective view of venlafaxine hydrochloride. Displacement ellipsoids are drawn at the 30% probability level.
hydrogen bond, with the O atom of the hydroxyl group of the cation translated one unit along the a axis. These hydrogen bonds (Table 2), which stabilize the crystal structure (Fig. 2), lead to chains of molecules along the short $a(=5.797 \AA)$ axis. An identical hydrogen-bonding scheme constitutes the molecular chain in the orthorhombic polymorph, along the short b ($=5.881 \AA$) axis (Vega et al., 2000). Hence the two polymorphic modifications have the same lattice stabilization mechanism. However, careful comparison of the torsion angles (Table 3) reveals that the molecules differ by 3 to 6° in the rotations about the bonds $\mathrm{N} 1-\mathrm{C} 14, \mathrm{C} 1-\mathrm{C} 7$ and $\mathrm{C} 7-$ C 14 . Hence these two forms of venlafaxine hydrochloride are conformational polymorphs (Bilton et al., 1999).

Experimental

Crystals of form II of venlafaxine hydrochloride suitable for X-ray diffraction were grown from a mixture of methanol and ethyl acetate (1:8).

Crystal data

$\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{NO}_{2}{ }^{+} \cdot \mathrm{Cl}^{-}$
$M_{r}=313.87$
Monoclinic, $P 2_{1} / n$
$a=5.797$ (6) \AA
$b=26.074$ (7) \AA
$c=11.722$ (3) \AA
$\beta=100.72(5)^{\circ}$
$V=1741(2) \AA^{3}$
$Z=4$
$D_{x}=1.197 \mathrm{Mg} \mathrm{m}^{-3}$
$\mathrm{Cu} \mathrm{K} \alpha$ radiation
Cell parameters from 24
\quad reflections
$\theta=6.4-23.7^{\circ}$
$\mu=1.97 \mathrm{~mm}^{-1}$
$T=298.2 \mathrm{~K}$
Needle, colourless
$0.40 \times 0.10 \times 0.10 \mathrm{~mm}$

Data collection
Rigaku AFC-7S diffractometer $\omega-2 \theta$ scans
Absorption correction: ψ scan
(North et al., 1968
$T_{\text {min }}=0.843, T_{\text {max }}=0.996$
3564 measured reflections
3304 independent reflections 3304 reflections with $I>1.3 \sigma(I)$

Figure 2
Packing of the molecules.

Refinement

Refinement on F
$w=1 /\left[\sigma^{2}\left(F_{o}\right)+0.00016\left|F_{o}\right|^{2}\right]$
$R=0.068$
$(\Delta / \sigma)_{\max }=0.001$
$w R=0.068$
$\Delta \rho_{\text {max }}=0.40 \mathrm{e}^{-3}$
$S=1.48$
1816 reflections
199 parameters
Extinction correction: Zachariasen (1967)

H atoms treated by a mixture of independent and constrained refinement

Extinction coefficient: 0.0000022 (7)

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{O} 1-\mathrm{C} 4$	$1.363(6)$	$\mathrm{N} 1-\mathrm{C} 15$	$1.486(6)$
$\mathrm{O} 1-\mathrm{C} 17$	$1.426(7)$	$\mathrm{N} 1-\mathrm{C} 16$	$1.487(7)$
$\mathrm{O} 2-\mathrm{C} 8$	$1.442(5)$	$\mathrm{N} 1-\mathrm{C} 14$	$1.495(6)$
$\mathrm{C} 4-\mathrm{O} 1-\mathrm{C} 17$	$117.0(4)$	$\mathrm{O} 1-\mathrm{C} 4-\mathrm{C} 5$	$125.4(4)$
$\mathrm{C} 14-\mathrm{N} 1-\mathrm{C} 16$	$113.3(4)$	$\mathrm{O} 2-\mathrm{C} 8-\mathrm{C} 9$	$106.3(3)$
$\mathrm{C} 15-\mathrm{N} 1-\mathrm{C} 16$	$110.6(4)$	$\mathrm{O} 2-\mathrm{C} 8-\mathrm{C} 13$	$110.2(3)$
$\mathrm{C} 14-\mathrm{N} 1-\mathrm{C} 15$	$109.7(4)$	$\mathrm{O} 2-\mathrm{C} 8-\mathrm{C} 7$	$108.7(3)$
$\mathrm{O} 1-\mathrm{C} 4-\mathrm{C} 3$	$115.8(4)$	$\mathrm{N} 1-\mathrm{C} 14-\mathrm{C} 7$	$114.4(3)$

Table 2
Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 2-\mathrm{H} 27 \cdots \mathrm{Cl}^{\mathrm{i}}$	$0.91(5)$	$2.33(5)$	$3.213(5)$	$164(4)$
$\mathrm{N} 1-\mathrm{H} 28 \cdots \mathrm{Cl} 1$	$0.92(6)$	$2.13(6)$	$3.040(5)$	$169(5)$

Symmetry code: (i) $1+x, y, z$.

Table 3
Comparison of some torsion angles $\left({ }^{\circ}\right)$ in form I and form II.

Angle	form I	form II
C16-N1-C14-C7	$58.8(5)$	$62.0(5)$
C15-N1-C14-C7	$-177.0(4)$	$-173.9(4)$
C2-C1-C7-C8	$-107.3(4)$	$-101.8(5)$
C2-C1-C7-C14	$129.1(4)$	$133.0(4)$
C6-C1-C7-C8	$71.7(5)$	$77.0(5)$
C6-C1-C7-C14	$-51.9(5)$	$-48.3(5)$
C1-C7-C14-N1	$-88.9(4)$	$-95.1(4)$
C8-C7-C14-N1	$144.7(3)$	$137.6(4)$

H atoms bound to carbons were fixed geometrically, with $\mathrm{C}-\mathrm{H}=$ $0.95 \AA$, and refined using a riding model. H atoms bound to O and N were refined isotropically.

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1994); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: teXsan (Molecular

Structure Corporation, 1995); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: teXsan; molecular graphics: ORTEP3 for Windows (Farrugia, 1999); software used to prepare material for publication: teXsan.

The authors acknowledge Dr A. Venkateswarlu and Dr K. Anji Reddy for their interest and encouragement in this work.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L. \& Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
Altomare, A., Cascarano, G., Giacovazzo, C. \& Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.
Bilton, C., Howard, J. A. K., Laxmi Madhavi, N. N., Nangia, A., Desiraju, G. R., Allen, F. H. \& Wilson, C. C. (1999). Chem. Commun. pp. 1675-1676.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Molecular Structure Corporation. (1994). MSC/AFC Diffractometer Control
Software. MSC, 9009 New Trails Drive, The Woodlands, TX 77381, USA.
Molecular Structure Corporation. (1995). teXsan. Version 1.7-2. MSC, 9009
New Trails Drive, The Woodlands, TX 77381, USA.
North, A. C. T., Philips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Rao, S. M., Vyas, K., Sivalakshmi Devi, A. \& Reddy, G. O. (1999). Pat. Appl No. 748/MAS/99, dated 19-7-1999.
Rao, S. M., Vyas, K., Sivalakshmi Devi, A. \& Reddy, G. O. (2002). Intl Pat. Appl. No. WO02/46140 A1, dated 13-6-2002.
Vega, D., Fernandez, D. \& Echeverria, G. (2000). Acta Cryst. C56, 1009-1010. Zachariasen, W. H. (1967). Acta Cryst. 23, 558-564.

